Causal Record Linkage Critical compromises with false discoveries

Causal Record Linkage

Link observations *X*, *T*, *Y* collected on different occasions without unique identifier, to obtain 'complete' profiles and perform causal inference.

Records are probabilistically linked based on partially identifying variables $X \implies$ linked records carry similar X

X are also involved in

- the outcome
 - as covariates

-				_				
X	2004	4236XF	0		2004	4236XF	y1(0)	$\frac{1}{2}$
J.	1989	1106BX	1		1989	1106BX	y2(1)	
P T	1987	2042NZ	0		1987	2042NZ	y3(0)	
Ö	2001	1102AB	1		2001	1102AB	y4(1)	
	1999	3272TC	0		1991	3272TC	y5	Ö
S	1991	3272TC	1		2002	3015CX	y6	
	1999	3272TC	0		2000	3015CX	у7	
S	1997	3272TC	1		1997	3272TC	y8(0)	$\frac{1}{2}$
*	1995	3015CX	0		1997	3272TC	y9(1)	
X	1991	3015CX	1		1999	3272TC	y10(1)	
the second	1995	3015CX	0		1991	3272TC	y11	
X	1997	3015CX	0		1997	3272TC	y12	
					1991	3015CX	y13(1)	
					1995	3015CX	y14	
trial					1997	3015CX	y15(0)	
uidi					1997	3015CX	y16	₹Ĵ¢

Inference is conducted on <

correctly linked records with rare values of X \implies high linkage probabilities

(in)correctly linked records with common

• as effect modifiers \implies treatment heterogeneity

• the treatment assignment

Motivations

- Integrate data to address causal questions without new trial Work with pseudonymised data
- Study long-term outcomes
- Explore secondary outcomes

Tools for causality

Propensity score can be estimated on one file

- Non-adjusted method like stratification may be used \rightarrow avoid direct adjustment of X (which depends on the link
- \rightarrow avoid direct adjustment of X (which depends on the linkage)
- \rightarrow enforce conditional exchangeability

Impact on identifiability conditions

Consistency Y(t) not well defined
 the value we would have observed (had individuals taken the

values of X \implies lower linkage probabilities

• True links • Falsely linked records, with correct / wrong *T* and or *Y* $y(1) = f(\alpha x + \beta x + \varepsilon)$ may be modelled with $\hat{\alpha} x$ $y(0) = f(\alpha x + \varepsilon)$ may be modelled with $\hat{\alpha} x + \hat{\beta} x$

Attenuation bias versus rare values effect

observed treatment) depends on the real latent treatment linked data $\,\times\,$ / stringent set of linked data $\,\simeq\,\sqrt$

Overlap potential lack of overlap in some areas when selecting a stringent set of linked records
 linked data √/ stringent set of linked data ×

Exchangeability / No unobserved confounders
with uncertainty quantification, observables should be rich
enough to study causality with stratification
linked data √/ stringent set of linked data ≃ ×

Parallel with defiers in non-compliance problems a treatment opposite to the one producing the outcome is observed though the linkage cannot be an instrument

 \rightarrow Record Linkage as interference

More certainly linked data are outliers of the population, exhibiting rarer values of $X \rightarrow$ affect inference

→ get rid of the false discoveries, remove attenuation bias, avoid opposite outcome contributions

→ introduce rare values effect, potential lack of overlap and lack of exchangeability

Amsterdam UMC Universitair Medische Centra

EPIDEMIOLOGY AND

DATA SCIENCE

statistics

EDS

 \rightarrow To be corrected with generalisability methods, from the stringent set of linked records towards the initial population

Kayané Robach with Michel H Hof, Mark A van de Wiel, Stéphanie L van der Pas