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A bit of history [Bacaër, 2011]

• 1750s : Leonhard Euler human population as a geometric series

• 1798 : Thomas Robert Malthus ‘the power of population is indefinitely greater than
the power in the earth to produce subsistence for man’

• 1838 : Pierre-François Verhulst logistic growth

• 1920 : Alfred James Lotka biological systems dynamics exhibit oscillations
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Population dynamics from 1908 to 1935

Figure: A Canadian lynx chasing a snowshoe hare (left). Illustration of the cyclical model for lynx
and snowhare collected pelts based on hunting data from 1845 to 1935 (middle) and of the
population dynamics over a time window from 1908 to 1935 (right).
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The Lotka-Volterra for a community of species

Lotka Volterra system is about understanding abundances dynamics for N species having
interactions. For each k ∈ [[1,N]],

∂xk
∂t

= xk ( rk − xk + [ΓN · x⃗ ]k )

= xk
(
rk − [(IN − ΓN) · x⃗ ]k

)
x⃗ abundances vector
xk = xk(t) abundance of species k
rk natural growth rate of species k
ΓN N × N interaction matrix

Non-invasibility assumption:

∀k ∈ [[1,N]],

(
1

xk

∂xk
∂t

)
xk→0+

≤ 0 ⇐⇒ ∀k ∈ [[1,N]], rk − [(IN − ΓN) · x⃗⋆]k ≤ 0

[Law and Morton, 1996, ‘Condition for invasion by a new specie’].
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From Lotka-Volterra to RMT

After R. M. May ideas in 1972, we started using random matrices to model interactions
matrix.

Figure: Example of a 10× 10 random matrix to represent the interactions within a community of
species.
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The i.i.d. model

We use the the i.i.d. model of interactions and we study a LV system where r = 1N and
ΓN = XN

α
√
N
, XN being fulfilled with centered entries of unit variance.

For each k ∈ [[1,N]],

∂xk
∂t

= xk

(
1−

[(
IN − XN

α
√
N

)
· x⃗

]
k

)

XN N × N non hermitian random matrix
1/α the interaction strength

Objective:
=⇒ analyze the properties of this system
of coupled equations depending on the
interaction strength values (in non hermitian
context)

Figure: Uniform distribution of ΓN
eigenvalues in the disk for a non hermitian
random matrix of size 500× 500. In blue,
the circle of radius equals to the entries
standard deviation, 1/α.
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Different nature of interactions

+ 0 −

+ mutualism
bees and flowers

0
commensalism
small fishes hidden

on sharks
neutralism

−
parasitism
caterpillars on

oak or pine trees

amensalism
humans and Earth

competition
for food, shelter,

partner or sunlight

Table: Different kind of species interactions that can be found in nature.
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Properties of interest

An equilibrium point is defined as:

∀k ∂xk
⋆

∂t
= 0

⇐⇒ ∀k xk
⋆

(
1−

[(
IN − XN

α
√
N

)
· x⃗⋆

]
k

)
= 0

Then, for each k, either xk
⋆ = 0 or 1−

[(
IN − XN

α
√
N

)
· x⃗⋆

]
k
= 0

We investigate the possible equilibria points of the LV system and some of their
properties:

• existence and uniqueness

• non negativity, and even more feasibility (strict positivity)

• stability, and even more global stability
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The Linear Complementarity Problem

The Linear complementarity Problem is to find out solutions x , y ∈ RN such that

y = Ax + r ≥ 0,

x ≥ 0,

yT · x = 0

for A a N × N matrix and r ∈ RN . We denote this system LCP(A, r).
Finding an equilibrium point to the LV system is equivalent to solve the
LCP(IN − ΓN ,−1N):

(IN − ΓN) · x⃗⋆ − 1N ≥ 0,

x⃗⋆ ≥ 0,

((IN − ΓN) x⃗
⋆ − 1N)

T · x⃗⋆ = 0

=⇒ Focus on existence and uniqueness of solution(s) to this LCP, feasibility and
global stability, that we will analyze according to the values of the interaction strength.
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Existence and uniqueness of the solution

Definition

Principal minors are the determinant of principal submatrices obtained when striking out
a same set of rows and columns.

Definition

A is a P-matrix if all its principal minors are strictly positive.

Theorem (Murty)

[Murty, 1972, Theorem 4.2] LCP(A, r) has a unique solution for each r ∈ RN if and only
if A is a P-matrix.

=⇒ Focus on the P-property.
However, [Rohn and Rex, 1996, Theorem 3.4] shows that the problem is NP-hard for a
general real matrix.
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Jiri Rohn’s algorithm

Nevertheless [Rohn, 2012] proposes an
algorithm which might converge quickly in
some favourable cases, or alternatively which
explore exhaustively the principal minors.

During the internship I translated the initial
matlab program into python.

We conjecture a phase transition for the
P-property, in the non hermitian setting, at
1
α
= 1.

Figure: Simulation of the probability of
being a P-Matrix based on Rohn’s
algorithm. Phase transition at α = 1. For
each value α ∈ (0, 2] the value of the curve
corresponds to a Montecarlo simulation

over 10 iterations for ΓN = XN

α
√
N

of size

15× 15.

ENS Paris Saclay Lotka Volterra for theoretical ecology September 15, 2022 13 / 36



Introduction Equilibrium Existence and uniqueness Feasibility Global stability P-property Exploration Discussion and conclusion

Elements for the proof

Conjecture:
Let XN

α
√
N

be a normalized random
matrix, centered with unit variance and
bounded fourth moments. For all ε > 0
we consider

(
1
β
+ ε

)
IN − XN

α
√
N
, and we

conjecture that

• if 1
β
< 1

α
, then

(
1
β
+ ε

)
IN − XN

α
√
N

is not a P-matrix

• if 1
β
> 1

α
, then

(
1
β
+ ε

)
IN − XN

α
√
N

is a P-matrix

• P-matrix =⇒ positive real
eigenvalues, [Cottle et al., 2009,
Theorem 3.3.4]

• ∀λk ∈ R, 1
β
+ ε−

λk

(
XN√
N

)
α

should
be positive

• λk

(
XN√
N

)
belongs to [−1, 1]

(circular law) a.s. for N large

1

β
+ ε−

λk

(
XN√
N

)
α

> 0, ∀λk ∈ R

⇐⇒ 1

β
+ ε >

1

α

Thus
1
β
+ ε < 1

α
=⇒

(
1
β
+ ε

)
IN − XN

α
√
N

is

not a P-matrix.
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Phase transition phenomena in the LCP
(
IN − XN

α
√
N
,−1N

)
depending on α

α0 1
√
2 2

√
2 log N

P-matrix

Proof

Conjecture
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Feasibility

Feasibility: ∀k ∈ [[1,N]], xk
⋆ > 0 ⇐⇒ x⃗⋆ = (IN − ΓN)

−1 · 1N

The analyze of LCP(IN − ΓN ,−1N) from the perspective of linear algebra shows evidence
of a phase transition phenomenon for feasibility of the LV model equilibrium at
1
α
= 1√

2 log N
, [Bizeul and Najim, 2021, Theorem 1.1].

Figure: Simulation of the probability of no species extinction. Phase transition at κ =
√
2. For

each value κ ∈ (0, 2] the value of the curve corresponds to a Montecarlo simulation over 50

iterations for ΓN = XN
κ
√

N log N
of size 500× 500.
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Global stability

Definition

A is Volterra Lyapunov stable means there exists a D positive definite diagonal matrix
such that, DA+ A⋆D is symmetric negative definite.

Theorem (Takeuchi & Adachi)

[Takeuchi, 1996, Theorem 3.2.1] The Lotka Volterra system ẋk = xk
(
rk −

∑N
l=1 Ak,lxl

)
for k ∈ [[1,N]] has a non negative and globally stable equilibrium point x⋆ for each
r ∈ RN if −A is Volterra Lyapunov stable.

Theorem (Takeuchi, Adachi and Tokumaru)

[Takeuchi et al., 1978, Theorem 2] and [Takeuchi, 1996, Lemma 3.2.1] If −A is Volterra
Lyaunov stable, then A is a P-matrix and the real parts of its eigenvalues are positive.

=⇒ The P-property is weaker than the Volterra Lyapunov stability.
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Non hermitian case ΓN = XN

α
√
N

We check the Volterra Lyapunov stability condition for the positive definite diagonal
matrix D = I .

(−I + ΓN) + (−I + ΓN)
⋆ < 0

⇐⇒ − 2I + ΓN + Γ⋆
N < 0

⇐⇒ λmax (ΓN + Γ⋆
N) < 2

• [ΓN + Γ⋆
N ]i,j =

XN i,j+XN j,i

α
√
N

= [ΓN + Γ⋆
N ]j,i =⇒ Wigner matrix

• then, λmax (ΓN + Γ⋆
N)

a.s.−→
N→∞

2
√
2

α

− I + ΓN Volterra Lyapunov stable a.s. for N large for matrix I

⇐⇒ λmax (ΓN + Γ⋆
N) < 2

⇐⇒ 1

α
<

1√
2

a.s. for N large
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From the P-property to regularity of an interval matrix

Definition

A matrix interval [B,B] = {B ∈ Rm×n;B ≤ B ≤ B} is regular if it contains no singular
matrix, otherwise it is singular.

Theorem

[Rump, 2003, Theorem 2.1] If A− I and A+ I are non singular then the following
properties are equivalent

• A is a P-matrix

• [(A− I )−1 (A+ I )− I , (A− I )−1 (A+ I ) + I ] is regular

• max
x∈{±1}n

ρR
(
(A+ I )−1 (A− I )Dx

)
< 1
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Spectral characterization of the P-matrix problem

• [Rump, 2003, Theorem 2.1] gives a spectral characterization of the P-property.

IN − ΓN P-matrix

⇐⇒
[
−2ΓN

−1,−2ΓN
−1 + 2IN

]
is regular

• matrices in this interval have the form: −2ΓN
−1 +∆, ∆ being a diagonal matrix

with entries in [0, 2]

We need to explore the matrix interval to prove either

• the existence of a singular matrix in the interval

or

• the fact that all matrices in the interval are non singular

Then, it is ‘easier’ to show the singularity of an interval rather than its regularity.
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Spectrum of random matrices

Figure: Eigenvalues in the complex plan for a normalized random matrix (500× 500) on the left
and its inverse on the right.

• Random matrices have their spectrum uniformly distributed in a circle [Girko, 1985,
Main result],

• Eigenvalues of the inverse are the inverse of eigenvalues
=⇒ in the RMT context, they are spread outside the circle

To go further, we need to explore the spectrum of ΓN
−1 under a positive diagonal

deformation.
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ΓN and ΓN
−1

Figure: Spectrum of the 500× 500 random matrix ΓN and ΓN
−1 fulfilled with Gaussian entries

with µ = 0, σ = 1 normalized by α
√
N where α = 1

0.4
. The radius for ΓN is the standard

deviation that is 1
α

= 0.4 and the one for ΓN
−1 is its inverse.
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Spectrum of Γ−1
N + δI

Figure: Evolution of the spectrum for a 500× 500 random matrix inverse ΓN
−1 perturbed by δ · I

with δ ∈ [0, 4] (left) and its sparse version with a third of zeros (right). ΓN = XN

α
√
N

where

α = 1
0.4

. In orange, the circle of radius equals to the inverse of the standard deviation, that is to

say α in this case. In blue, the eigenvalues of ΓN
−1 + δI .
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Spectrum of Γ−1
N +∆

Figure: Evolution of the spectrum for a 500× 500 random matrix inverse ΓN
−1 perturbed by a

diagonal ∆ with distinct entries in [0, 4] (left) and its sparse version with a third of zeros (right).

ΓN = XN

α
√
N

where α = 1
0.4

. In orange, the circle of radius equals to the inverse of the standard

deviation, that is to say α in this case. In blue, the eigenvalues of ΓN
−1 +∆.
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• Lotka Volterra equations play a key role in mathematical modeling for ecology,
biology or chemistry

• Using random matrices theory in such context allows to alleviate the difficulty to
observe real interactions within large ecosystem (with high number of species)

• Working on the phase transition phenomena according to some parameters values
help understanding species dynamics subject to abiotic factors

• Random Matrix Theory may help to analyze the P-property of IN − ΓN
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Thank You !
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Appendix
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Wigner matrices, [Bai and Yin, 1988]

WN (N × N) symmetric random matrix with i.i.d. entries such that:

• E [WN i<j ] = 0,

• extra diagonal variance V (WN i<j) = σ2,

• finite fourth moment

• λmax

(
WN√
N

)
a.s.−→

N→∞
2σ

• λmin

(
WN√
N

)
a.s.−→

N→∞
−2σ

Distribution of normalized Wigner eigenvalues

follows semi circular distribution

√
(4σ2−λ2)+

2πσ
dλ∥∥∥∥WN√

N

∥∥∥∥ =

√
λmax

(
1

N
WNW

⋆
N

)
=

∣∣∣∣λmax

(
WN√
N

)∣∣∣∣ ∨ ∣∣∣∣λmin

(
WN√
N

)∣∣∣∣
a.s.−→

N→∞
2σ

Figure: Eigenvalues histogram of a
normalized Wigner matrix of size
500× 500 fulfilled with gaussian
entries (centered with variance equals
to σ2). In orange, the density of the
semi circular law.
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Jiri Rohn’s algorithm

Consider the interval [Ac ±∆]

• Ac singular =⇒ [Ac ±∆] is singular

• |ACx | ≤ ∆|x | has a non zero solution x ⇐⇒ [Ac ±∆] is singular,
[Rex and Rohn, 1998, Theorem 2.1 from Oettli and Prager]

• steepest determinant descent, [Rohn, 1989]

• [Ac ±∆] is singular ⇐⇒ the linear programming problem (⋆) is unbounded for
some z ∈ {±1}n.
(⋆) = max{zT · x ; (Ac −∆Dz) · x ≤ 0, (Ac +∆Dz) · x ≥ 0,Dz · x ≥ 0},
[Jansson and Rohn, 1999, Theorem 4.3]

• ρ(|AC
−1|∆) < 1 =⇒ [AC ±∆] is regular, [Rex and Rohn, 1998, Corollary 3.2 from

Beeck]
• [Rex and Rohn, 1998, Sections 4 and 5],

• λmax(∆T∆) < λmin(Ac
TAc ) =⇒ [AC ±∆] is regular

• λmax(Ac
TAc ) ≤ λmin(∆

T∆) =⇒ [AC ±∆] is singular
• Ac

TAc − ∥∆T∆∥I positive definite =⇒ [AC ±∆] is regular
• ∆T∆− Ac

TAc positive definite =⇒ [AC ±∆] is singular

• Loop on {±1}n to identify the possible singular matrix which should have a specific
form described in [Rohn, 1993, theorem 2.2]
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