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Kayané ROBACH

kayane.robach@ens-paris-saclay.fr

Internship supervisor: Jamal NAJIM, LIGM
Referent teacher: Alain TROUVÉ, ENS PARIS SACLAY
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‘What distinguishes a mathematical model from, say, a
poem, a song, a portrait or any other kind of ”model,”
is that the mathematical model is an image or picture of
reality painted with logical symbols instead of with words,
sounds or watercolors.’ – John L. Casti

Introduction
A short history of mathematical population dynamics
In the 1750s Leonhard Euler depicts human population
as a geometric series popt+1 = λ · popt where λ > 1
represents the growth rate1 [Bacaër, 2011]. This simply
rewrites popt = λt · pop0 ⇐⇒ popt = ert · pop0 where
r = log(λ) = B − D > 0 is assumed to be written as the
difference between some birth and death functions, hence
the idea of exponential growth. Therefore the differential
equation for population at time t is:

∂popt

∂t
= (B −D) · popt .

In 1798, Thomas Robert Malthus pointed out the limits
of this geometric growth modelization: ‘the power of pop-
ulation is indefinitely greater than the power in the earth
to produce subsistence for man’. Inspired by earlier works
and Malthus ideas, Pierre-François Verhulst proposed a
new differential equation for population in 1838 [Bacaër,
2011]

∂popt

∂t
= ř · popt · (1−

popt

m
) ,

the logistic growth. Remark that this is equivalent to the
previous model where D is replaced by Dt = D · popt,
since

∂popt

∂t
= (B −Dt) · popt = B · popt ·

(
1− popt

B/D

)
.

As popt increases, the growth rate decreases since limiting
factors appear (e.g. amount of food available), hence there
is a maximal population value m = B/D (called carrying
capacity). For a small population (popt ≪ m) we recover
the Euler exponential growth.

Independently of one another, Lotka and Volterra inves-
tigated models taking into account several population. Al-
fred James Lotka suggested in 1920 that biological sys-
tems dynamics exhibit improbable and permanent oscilla-
tions [Lotka, 1920]. He considered a system in the pro-
cess of evolution for a simple special case comprising two
species of matter, a herbivorous animal feeding on plant.
In 1925, Vito Volterra studied the predator prey fishery
problem uncovered by Umberto d’Ancona in the Adriatic
sea and proposed the same model as Lotka 5 years earlier.

Lotka Volterra models
Robert McCredie May, a pioneer in ecological research
and theoretical analysis of population and ecosystem dy-
namics, by triggering an international work studying eco-
logical communities, made it possible to progress in the

1growth rate =
popt+1−popt

popt
= λ− 1

study of large LV models by calling on high dimensional
random matrices and miscellaneous characteristics of their
spectrum. The introduction of random matrix theory into
theoretical ecology in 1972 (start of the worldwide re-
search program in theoretical ecology which is credited
to R. M. May) and since then, enriches the grasp of Lotka
Volterra modeling for populations dynamics. The overlay-
ing mathematical and ecological work done on the subject
enabled progress to be made on key questions about Lotka
Volterra system dynamics. For a model to illustrate a vi-
able ecosystem, the possible equilibria must be stable and
feasible. During the 1970s such properties, stability and
later feasibility were investigated, see e.g. [May, 1972a],
[May, 1974], [Goh and Jennings, 1977]. Existence and
uniqueness questions are found to be related to the Lin-
ear Complementarity Problem (LCP) introduced before
1970 in [Cottle and Dantzig, 1968]; under some condi-
tions the LCP indeed ensures existence and unicity of a
non negative equilibrium—satisfying the non invasibility
condition—to the model we study, see Section 3 for its
presentation.

Context and objectives
Specifically, the LCP and the Lotka Volterra system of
equations examined for theoretical ecology are connected
and, there exists an equivalence between the P-property of
the matrix involved in the model and the unique solution
of the LCP. Hence the importance of the P-matrix prob-
lem to ensure the existence of a single equilibrium to the
model. This research work focuses on the effect of in-
teraction strength within a one community ecosystem on
the behavior of the model. Especially, we investigate the
phase transition phenomenon of the P-property according
to this interaction strength. This report is mainly a sur-
vey about the extensive reference to the theories and pre-
vious research developed on P-matrices and random matri-
ces in Lotka Volterra models. A property transposing the
P-matrix problem into a spectral characterization is high-
lighted and gives hope to the understanding of phase tran-
sition phenomena of the P-property in the special case of
random matrices.

Organization of the report
In the very first section, we present Lotka Volterra sys-
tems for ecology and especially we focus on a well known
example, the predator prey model, before introducing the
role of random matrices in the field. In Section 2 we make
some reminders on random matrix theory that might be
useful to follow this work. We then present the model in
Section 3 before highlighting in Section 4 the highest de-
gree of research results necessary to tackle the P-matrix
problem we chose to focus on. Before closing the dis-
cussion, we illustrate the research tracks taken during this
project with simulations in Section 5. In this section we
explain Jiri Rohn algorithm for solving the P-matrix prob-
lem, that we coded on python.
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1 Lotka Volterra systems for ecology

1.1 Lotka Volterra model for lynx and snow-
show hare . . . . . . . . . . . . . . . . . 3

1.2 Encoding reality in the interaction matrix 4
1.2.1 i.i.d. model . . . . . . . . . . . . 4
1.2.2 Elliptic model . . . . . . . . . . . 4
1.2.3 Sparse model . . . . . . . . . . . 4

The application of Lotka Volterra models in ecology
cares about understanding abundances for each species k
among N species having interactions, 1 ≤ k ≤ N . Then,
the Lotka Volterra (LV) equation for species k describes
the evolution of its abundance over time.

∂xk

∂t
= xk ( rk − xk + [ΓN · x⃗]k )

= xk

(
rk −

[
(IN − ΓN ) · x⃗

]
k

)
x⃗ = x⃗(t) abundance vector for the N species
xk = xk(t) abundance value of species k
rk natural growth rate of species k
ΓN N ×N interaction matrix

We will see in that section an example for two species in
competition known as the predator prey model and then we
will present a way to generalize the model to large ecosys-
tems using random matrices.

1.1 Lotka Volterra model for lynx and snowshow
hare

Figure 1: A Canadian lynx chasing a snowshoe hare. Tom
& Pat Leeson – Science Photo Library

When preys are plentiful and predators have little com-
petition, their population increases quickly. When there
are too many predators, they eat all preys and the prey
population declines. Then the predators starve and their
population goes down again hence the prey population can
recover. This model is inherently a differential equation
system in which population growth depends on population
stock.

We will focus on the 2 × 2 Lotka Volterra system of
the evolution of lynx and snowshoe hare abundance as in-
dicated by the number of pelts collected by the Hudson’s

Bay company historical record from 1845 to 1935 in the
Mackenzie river region. Data, scanned from graph based
on [Odum, 1971], come from the famous canadian lynx
hare dataset [Hundley, 2003].

1845 1860 1875 1890 1905 1920 1935

Evolution of pelts abundance from 1845 to 1935

Hare
Lynx

Figure 2: Illustration of the cyclical model for lynx and
snowhare collected pelts based on hunting data from 1845
to 1935.
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Population dynamics from 1908 to 1935

Figure 3: Illustration of the population dynamics for lynx
and snowhare collected pelts based on hunting data over a
time window from 1908 to 1935.

Fig. 2 and Fig. 3 show the population dynamics of Cana-
dian lynx and snowshoe hare when the non-extinction
equilibrium is unstable. Prey and predator populations
tend to behave periodically when the enrichment paradox
occurs, as illustrated by the oscillations in animal abun-
dances in Fig. 2. Fig. 3 shows the plot in the (hare, lynx)
space of furs headcount.

The model sets up as follows:
∂h

∂t
= a · h︸︷︷︸

increases when
no predator

− b · h · l︸ ︷︷ ︸
transfer from
hare to lynx

∂l

∂t
= − c · l︸︷︷︸

decreases when
no catching game

+ d · h · l︸ ︷︷ ︸
transfer from
hare to lynx

3



a, b, c, d are the parameters, h represents the hares pop-
ulation and l the lynxes one. One can assume a loss of
mass in the transfer from hare (h) to lynx (l), leading to
consider that d ≤ b.

When looking for equilibria of the model we are inves-
tigating conditions for the process to remain unchanged,
that is to say, fixed point of the differential system. Such
points are called steady state, there are two ones in this
model:

• ‘species extinction’
{

h = 0
l = 0

• ‘species coexist’
{

h = c/d
l = a/b

In the following we give up the cyclical model and fo-
cus on a N paired equations system, which we present in
Section 3, of the form:

ẋ1 = x1 ( r1 − x1 + [ΓN · x⃗]1 )
ẋ2 = x2 ( r2 − x2 + [ΓN · x⃗]2 )
...
ẋk = xk ( rk − xk + [ΓN · x⃗]k )
...
˙xN = xN ( rN − xN + [ΓN · x⃗]N )

1.2 Encoding reality in the interaction matrix
By launching a global research program studying ecologi-
cal communities in 1972 [May, 1972b], Robert McCredie
May introduced the random matrix theory into theoreti-
cal ecology. He suggested that large complex ecosystems
might be modelled by random systems, whose behaviour
is known. Using random matrix theory in such context
enables to alleviate the difficulty to observe real interac-
tions within large ecosystems and enriches the knowledge
on Lotka Volterra models. Since then, we use normalized
random matrices as the interaction matrix in the LV mod-
els.

+ 0 −
+ mutualism

bees and flowers

0
commensalism
small fishes hidden

on sharks
neutralism

−
parasitism
caterpillars on

oak or pine trees

amensalism
humans and Earth

competition
for food, shelter,

partner or sunlight

Table 1: Different kind of species interactions that can be
found in nature.

Table 1 presents the different kinds of interaction that
can be found in nature. For the example of parasitism,
caterpillars compromise the health of oak and pine trees,
while oak and pine trees have a positive effect on caterpil-
lars by providing them with a home. The sign of the re-
lations between two species determines the nature of their
interaction.

1.2.1 i.i.d. model
The most basic assumption one can make to think about
interactions between species from a diversified ecosystem,
is to consider independent and identically distributed en-
tries in the interaction matrix, ΓN = XN√

N
where XN has

centered i.i.d. components with unit variance (e.g. could
be normally distributed with expectation 0 and variance
1, or rademacher distributed with values ±1). Not re-
alistic but tractable, this setting is useful for mathemati-
cal properties of random matrices. We talk about ‘circu-
lar model’ since eigenvalues are uniformly distributed in
a disk [Girko, 1985] as we can observe on Fig. 4. Note
that since the matrix from which eigenvalues are extracted
is real, its complex eigenvalues will always occur in com-
plex conjugate pairs, hence the horizontal symmetry on the
graph presented in Fig. 4.

In all simulations we present in this research work, the
random matrix XN has centered components with unit
variance, graphs obtained are the same for normally dis-
tributed entries with expectation 0 and variance 1, or for
rademacher distributed entries with values ±1.

−σ σ

Figure 4: Uniform distribution of eigenvalues in the disk
for a random matrix of size 500 × 500. In blue, the circle
of radius equals to the entries standard deviation.

1.2.2 Elliptic model
The previous interactions modeling can be improved by
linking entries from across the diagonal. The sign and
magnitude of the covariance—ρ in Fig. 5 and Fig. 6—
between coupled entries determines the nature, e.g. com-
petitive or mutual (see Table 1 for more details), of the
interaction.

We talk about ‘elliptic model’ since eigenvalues are uni-
formly distributed in an ellipse [Girko, 1985] as we can
observe on Fig. 6. Note that, as before, complex eigenval-
ues occur in complex conjugate pairs, hence the horizontal
symmetry on the graph presented in Fig. 6.

1.2.3 Sparse model
Within an ecosystem of N species, each species does not
interact with all N − 1 others, therefore one might want to
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Cov
(
ΓNi,j ,ΓNj,i

)
= ρ

Figure 5: Illustration of the matching between symmetric
entries of an elliptic matrix. Each pair of entries (meaning
components with symmetric indices) comes from a multi-
variate distribution of size two (mean zero, unit variance,
covariance equals to ρ) while the diagonal are i.i.d. with
mean zero and finite variance.

1 + ρ

1− ρ

Figure 6: Uniform distribution of eigenvalues in the ellipse
for an elliptic random matrix of size 500×500. In blue, the
ellipse of semi major and semi minor axes equal to 1 + ρ
and 1−ρ respectively, ρ is the covariance of each matched
components in the matrix.

consider sparse matrix of interaction, [Akjouj and Najim,
2021].

Because of the impossibility to observe the interaction
matrix, we make models using large random matrices as
introduced above. We can easily handle the behavior of
such matrices studying the convergence of some macro-
scopic observables, their fluctuations or their concentra-
tion toward the mean. The asymptotics of random matrices
macroscopic quantities (such as the spectral measure) al-
low for interesting effect on the system dynamics and thus,
substantial progress in the understanding of Lotka Volterra
models. In the next section, we will introduce some basics
on random matrix theory before establishing our model of
interest in Section 3.

2 Reminders on random matrix theory
Matrix norms. For any matrix A, we define:

• its Frobenius norm

∥A∥F =

√∑
i,j

|ai,j |2 =
√

Tr (AA⋆)

• its spectral norm:

∥A∥ =
√

λmax (AA⋆)

If A is hermitian then ∥A∥ = |λmax (A)|∨|λmin (A)|.

Spectral radius. For a matrix B, its spectral radius is
the maximum over its eigenvalues modulus,

ρ (A) = max {|λ|C | λ ∈ Sp (A)} ,

where |·|C denotes the modulus. We denote by ρR the spec-
tral radius computed on real eigenvalues only.

Theorem 2.1 ([Geman, 1986, Main result]). If the
random matrix A is such that ∀i, j,

• E[Ai,j ] = 0,
• E[A2

i,j ] = σ2,
• E[|Ai,j |4] ≤ c for some positive c

then

lim
N→∞

ρ

(
A√
N

)
≤ σ a.s.

Spectral norm corresponds to the largest singular eigen-
value while spectral radius points the largest eigenvalue
modulus. For random matrices with unit variance, almost
surely and asymptotically spectral radius is one and largest
singular value is 2 ; random matrices are an example of the
gap between both spectral radius and spectral norm. Fur-
thermore, in general we have:

Proposition 2.2. [Friedland, 2021, Lemma 2.1] ∀A,
for any norm ∥·∥, ρ(A) ≤ ∥A∥

Wigner matrix, [Bai and Yin, 1988] WN (N ×N)
symmetric random matrix with i.i.d. entries such that
E
[
WNi<j

]
= 0, V

(
WNi<j

)
= σ2 and all entries have fi-

nite fourth moment. Variance of diagonal entries do not in-
tervene in the results thus diagonal and off diagonal entries
could have different expectation and variance (a different
expectation would result in a translation of the spectrum).

• λmax

(
WN√
N

)
a.s.−→

N→∞
2σ

• λmin

(
WN√
N

)
a.s.−→

N→∞
−2σ

Then,∥∥∥∥WN√
N

∥∥∥∥ =

√
λmax

(
1

N
WNW ⋆

N

)
=

∣∣∣∣λmax

(
WN√
N

)∣∣∣∣ ∨ ∣∣∣∣λmin

(
WN√
N

)∣∣∣∣
a.s.−→

N→∞
2σ
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Figure 7: Eigenvalues histogram of a normalized Wigner
matrix of size 500 × 500 fulfilled with gaussian entries
(centered with variance equals to σ2). In orange, the den-
sity of the semi circular law.

Distribution of normalized Wigner eigenvalues follows

semi circular distribution Cσ(dλ) =

√
(4σ2−λ2)+

2πσ dλ (see
the shape of the eigenvalues histogram on Fig. 7).

Theorem 2.3. [Wigner, 1958] Given {WN√
N
}N∈N a

sequence of wigner matrices, the empirical law of
eigenvalues µWN/

√
N = 1

N

∑N
i=1 δλi(WN/

√
N) con-

verges asymptotically in probability to the semi cir-
cle law Cσ . Especially, for all f continuous and
bounded on R,

P
(∣∣∣∣∫ f(λ)dµWN√

N

(dλ)−
∫

f(λ)dCσ(dλ)
∣∣∣∣) −→

N→∞
0

3 The model

3.1 Architecture . . . . . . . . . . . . . . . . 6
3.2 Points of interest . . . . . . . . . . . . . 6

3.2.1 Existence and uniqueness . . . . 6
3.2.2 Feasibility . . . . . . . . . . . . . 7
3.2.3 Stability and global stability . . . 7

In this section we make use of a random matrix to reflect
large ecosystem interactions. We put in place a parameter
in order to bring into being the interaction strength as the
variance of the matrix components. While we will intro-
duce some results on models built upon an hermitian ma-
trix in the following sections, we will specialize on the less
well studied non hermitian case.

3.1 Architecture
The present work focuses on the following LV model:

∂xk

∂t
= xk

(
1−

[(
IN − XN

α
√
N

)
· x⃗

]
k

)
We note ΓN = XN

α
√
N

the interaction matrix. The
interaction matrix is composed of a normalized random
matrix—where entries in XN are centered with unit vari-
ance and finite fourth moment—and a parameter α to con-
trol for the strength of interactions among the species of
the ecosystem. Then the study of XN

α
√
N

comes down to

the analysis of X̃N√
N

where entries in X̃N are centered with
variance equals to 1/α2 and finite fourth moment.

We then define the interaction strength as 1/α; when
α increases, 1/α decreases traducing weaker interactions
and vice versa.

Under this setting, the equilibrium is defined as:

∀k, ∂xk
⋆

∂t
= 0

⇐⇒ ∀k, xk
⋆

(
1−

[(
IN − XN

α
√
N

)
· x⃗⋆

]
k

)
= 0

Then, for each k, either
• xk

⋆ = 0
or

• 1−
[(

IN − XN

α
√
N

)
· x⃗⋆

]
k
= 0

3.2 Points of interest
We focus on miscellaneous properties regarding Lotka
Volterra differential equation system, existence and
uniqueness of an equilibrium, feasibility and stabil-
ity/global stability of the latter.

3.2.1 Existence and uniqueness
We are interested in whether or not there exists an equilib-
rium x⃗⋆, i.e. a point from which there is no further tempo-
ral evolution:

∂xk
⋆

∂t
= 0, ∀k ∈ [[1, N ]] [Û]

and whichever this equilibrium is unique.
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3.2.2 Feasibility

Definition 3.1. The feasibility domain of an ecologi-
cal community describes the set of abiotic and biotic
environmental factors under which all species have
positive abundances at equilibrium.

We are curious about the equilibrium feasibility, mean-
ing whether or not there is species extinction i.e. the equi-
librium is feasible if

xk
⋆ > 0, ∀k ∈ [[1, N ]] [�]

If IN − ΓN is invertible the feasible equilibrium (when
all xk

⋆ are different from zero) is defined as

x⃗⋆ = (IN − ΓN )−1 · 1N

Theorem 3.2. If a matrix A is such that ρ(A) < 1
then I −A is invertible and (I −A)−1 =

∑
k≥0 A

k

Proof . First, note that ρ(A) = lim
K→∞

∥∥AK
∥∥1/K

[Gelfand, 1941]. By this formula, ρ(A) < 1 =⇒
lim

K→∞

∥∥AK
∥∥ < 1 =⇒ lim

K→∞
AK = 0.

K∑
k=0

Ak = I +A+ · · ·+AK

A

K∑
k=0

Ak = A+A2 + · · ·+AK+1

∑
k=0

Ak −A

K∑
k=0

Ak = I −AK+1

⇐⇒ (I −A)

K∑
k=0

Ak = I −AK+1

lim
K→∞

(I −A)

K∑
k=0

Ak = I − lim
K→∞

AK+1︸ ︷︷ ︸
0 since ρ(A)<1

(I −A)
∑
k≥0

Ak = I

Therefore (I − A) is invertible and its inverse is de-
fined as (I −A)−1 =

∑
k≥0 A

k.

Thus, IN − ΓN is invertible if ρ (ΓN ) < 1. By The-
orem 2.1 ρ (ΓN ) ≤ 1

α almost surely for N large, which
is strictly inferior to one if and only if α > 1. Then, if
α > 1, IN − ΓN is invertible and both criteria [Û] and [�]
are equivalent to x⃗⋆ = (IN − ΓN )−1 · 1N .

[Bizeul and Najim, 2021] examine a Lotka Volterra
model involving an interaction strength term decreasing
with the dimension of the ecosystem (αN −→

N→∞
∞,

αN = κ
√
logN, κ > 0). Feasibility of the equilibrium

is investigated and a phase transition for the component-
wise positivity of the equilibrium vector of abundances is
highlighted at αN

⋆ =
√
2 logN .

Theorem 3.3 (Bizeul & Najim).

• If ∃ ε > 0 such that αN ≤ (1 − ε)αN
⋆ then

P
(

min
k∈[[1,N ]]

xk
⋆ > 0

)
−→
N→∞

0

• If ∃ ε > 0 such that αN ≥ (1 + ε)αN
⋆ then

P
(

min
k∈[[1,N ]]

xk
⋆ > 0

)
−→
N→∞

1

The heuristic to understand the critical scaling lies on
the fact that the expected value of the minimum over N
i.i.d. gaussian variables is −

√
2 logN .

Using our definition of the interaction matrix—see the
LV model—and assuming that IN − ΓN is invertible
(which is true if ρ (ΓN ) < 1, i.e. α > 1), then:

x⃗⋆ = (IN − ΓN )−1 · 1N

∀k ∈ [[1, N ]], xk
⋆ =

[
(IN − ΓN )−1 · 1N

]
k

=

∑
l≥0

(ΓN )
l · 1N


k

≈ 1 +
1

αN

∑
i∈[[1,N ]]

[XN ]k,i√
N︸ ︷︷ ︸

Zk∼N (0,1)

+ . . .

hence min
k∈[[1,N ]]

xk
⋆ ≈ 1 +

1

αN
min

k∈[[1,N ]]
Zk + . . .

≈ 1−
√
2 logN

αN

The crux of the demonstration for the critical scaling
αN

⋆ =
√
2 logN at which the feasibility property be-

comes true, relies on the negligence of the remaining terms
(designated by . . . in the above).

3.2.3 Stability and global stability

Definition 3.4. An ecosystem is stable if it returns to
its equilibrium state after a disturbance in the abun-
dance of its species due to various environmental
fluctuations.

We are concerned about the equilibrium stability i.e.
whether the steady state attracts surrounding points toward
itself or repels neighborhood points.

An equilibrium point is (locally) stable if, by placing
the system somewhere near the point, the latter will evolve
towards the equilibrium point. Global stability means that
whatever the initial point of the system, it will reach the
equilibrium point.

For non negative equilibrium to be stable it is required
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that,

1− [(IN − ΓN ) · x⃗⋆]k ≤ 0, ∀k ∈ [[1, N ]] [§]

⇐⇒ 1

xk

∂xk

∂t

∣∣∣∣∣
xk→0+

≤ 0, ∀k ∈ [[1, N ]]

(see [Law and Morton, 1996, “Condition for invasion by a
new specie”]). Such equilibrium is said to be saturated.

In ecology this requirement is better known as the non
invasibility condition and we include it as an hypothesis
in our LV model. It traduces the fact that when a small
population of a species is introduced into the environment
it does not proliferate or, when the size of a population
drops it cannot bounce back.

In his book “Global dynamical properties of Lotka
Volterra systems”, Yasuhiro Takeuchi studies similar sys-
tems to the LV model and devotes a whole chapter to their
stability properties. At this stage we need to introduce a
new concept to handle Takeuchi’s results.

Definition 3.5. A is said to be Volterra Lyapunov
stable if there exists a positive definite diagonal ma-
trix D such that DA + A⋆D is symmetric negative
definite.

The main result of this chapter on global stability of the
LV system equilibrium is the following:

Theorem 3.6 (Takeuchi & Adachi, [Takeuchi, 1996,
Theorem 3.2.1]). The Lotka Volterra system

ẋk = xk

(
rk −

N∑
l=1

Ak,lxl

)
for k ∈ [[1, N ]] has a non negative and globally sta-
ble equilibrium point x⋆ for each r ∈ RN if −A is
Volterra Lyapunov stable.

4 Literature review on the state of the art

4.1 Lotka Volterra systems and the Linear
Complementarity Problem . . . . . . . . 8
4.1.1 LCP solution . . . . . . . . . . . 8
4.1.2 Feasibility condition . . . . . . . 9
4.1.3 Global stability condition . . . . . 10

4.2 The P-property . . . . . . . . . . . . . . 10
4.2.1 Towards a spectral characterization 10

We evoked previously the main theoretical results on
feasibility and global stability of the equilibrium. In this
section, we will first see how these properties and the exis-
tence and uniqueness criteria are related to the well known
Linear Complementarity Problem, then we will focus on
the P-property and see how we can translate the algebraic
definition of a P-matrix into a spectral characterization.

4.1 Lotka Volterra systems and the Linear
Complementarity Problem

Finding an equilibrium point to the Lotka Volterra system
is equivalent to solve a specific Linear Complementarity
Problem (LCP). The LCP is a well known system of in-
equalities which has a wide range of applications from op-
timization theory to mathematical programming. Its ob-
jective is to find out solutions x, y ∈ RN such that

y = Ax+ r ≥ 0,

x ≥ 0,

yT · x = 0

for A a N × N matrix and r ∈ RN . We note this system
LCP(A, r).

In the previous section, we have seen conditions for x⃗⋆

to be an equilibrium point [Û] which does not result in any
species extinction: feasibility criterion [�] and we have
seen the non invasibility assumption [§].

Then, seeking a non negative equilibrium point
to our LV system is equivalent to solve the
LCP(IN − ΓN ,−1N ) finding the abundances vector
x⃗⋆ satisfying:

[§] (IN − ΓN ) · x⃗⋆ − 1N ≥ 0,

[�] x⃗⋆ ≥ 0,

[Û] ((IN − ΓN ) x⃗⋆ − 1N )
T · x⃗⋆ = 0

4.1.1 LCP solution
The connection between our problem and the
LCP(IN − ΓN ,−1N ) motivates the importance puts on
the existence of solution(s) to the LCP and the uniqueness,
the feasibility of the possible solution and the global sta-
bility of the latter. As follows, the LCP(IN − ΓN ,−1N )
is closely connected to the P-property of the matrix
IN − ΓN .

8



Definition 4.1. Principal minors of a matrix are the
determinants of the principal submatrices obtained
when striking out a same set of rows and columns.

See below (Fig. 8) an example of principal submatrix con-
struction.

Figure 8: Representation of principal submatrix compo-
nents (in blue) from a matrix obtained when selecting the
same indices in row and column.

Definition 4.2. A is said to be a P-matrix if all its
principal minors are strictly positive.2

Theorem 4.3 ([Murty, 1972, Theorem 4.2]).
LCP(A, r) has a unique solution for each r ∈ RN

if and only if A is a P-matrix.

Thus the P-property of the matrix IN−ΓN is equivalent
to existence and uniqueness of a non negative equilibrium,
fulfilling the non invasibility requirement, to the Lotka
Volterra system for all natural growth rate vector r ∈ RN .
Especially it would imply that LCP(IN − ΓN ,−1N ) has
a unique solution, in other words it ensures existence and
uniqueness of a non negative equilibrium to the Lotka
Volterra system for the natural growth rate equals to 1N .

Furthermore, the property of being a P-matrix is itself a
consequence of the Volterra Lyapunov stability introduced
earlier.

Theorem 4.4 (Takeuchi, Adachi and Tokumaru;
[Takeuchi et al., 1978, Theorem 2] and [Takeuchi,
1996, Lemma 3.2.1]). If −A is Volterra Lyapunov
stable, then A is a P-matrix and the real parts of its
eigenvalues are positive.

Moreover we know from [Cottle et al., 2009, Theorem
3.3.4] that a P-matrix has positive real eigenvalues. Thus,
if −A is Volterra Lyapunov stable, its spectrum is located
on the right part of the complex plane.

From Theorems 4.3 and 4.4 we get the following sum-
mary:

2Note that each diagonal entry of a P-matrix which repre-
sent a submatrix determinant when deleting all other rows and
columns are among the principal minors. The determinant of the
matrix, which is the determinant of a submatrix equal to the ma-
trix itself, is also among the principal minors.

LV system
has a unique solution

non negative and stable

LCP(I − ΓN , r)
has a unique solution

for each r ∈ RN

(−I + ΓN )
Volterra Lyapunov

stable

(I − ΓN )
P-matrix

LV system equilibrium
is globally stable

In Section 4.2, we will investigate the conditions on in-
teraction strength to satisfy the P-property of the random
matrix of interactions. First, we study how previous re-
sults are reflected in conditions on the interaction strength
for the feasibility and the global stability of the possible
solution to the LCP.

4.1.2 Feasibility condition
There is a phase transition phenomenon on the interaction
strength for the feasibility of the equilibrium in the Lotka
Volterra system (for both, hermitian or non hermitian, ran-
dom matrix of interaction), [Bizeul and Najim, 2021, The-
orem 1.1] at 1

α = 1√
2 logN

.

Figure 9: Simulation of the probability of no species ex-
tinction. Phase transition at κ =

√
2. For each value

κ ∈ (0, 2] the value of the curve corresponds to a Mon-
tecarlo simulation over 50 iterations for ΓN = XN

κ
√
N logN

of size 500× 500. We get the same graph for both hermi-
tian and non hermitian matrices.

On Fig. 9 we can observe the phase transition phe-
nomenon proved in [Bizeul and Najim, 2021, Theorem

9



1.1].

4.1.3 Global stability condition
The assumption of non invasibility presented earlier is nec-
essary to ensure stability of the possible non negative equi-
librium of the model but not sufficient. However, global
stability is fulfilled if the matrix ΓN − IN is Volterra Lya-
punov stable. The phase transition for the global stability
is not proved. However we know from [Takeuchi, 1996,
Chapter 3] a sufficient condition for the convergence of
the LV model toward a non negative globally stable equi-
librium: the Volterra Lyapunov stability. In other words, if
there exists a matrix D diagonal positive definite such that
D (−I + ΓN ) + (−I + ΓN )

⋆
D < 0—in the symmetric

negative definite sense—then global stability of the non
negative equilibrium is ensured.

Non hermitian case. Considering the normalized ran-
dom matrix ΓN = XN

α
√
N

where XN has centered entries
with unit variance, we check this condition for the positive
definite diagonal matrix D = I .

(−I + ΓN ) + (−I + ΓN )
⋆
< 0

⇐⇒ − 2I + ΓN + Γ⋆
N < 0

⇐⇒ λmax (ΓN + Γ⋆
N ) < 2

Moreover,

• [ΓN + Γ⋆
N ]i,j =

XNi,j+XNj,i

α
√
N

= [ΓN + Γ⋆
N ]j,i

• V ([ΓN + Γ⋆
N ]i,j) =

{
2

α2N for i ̸= j
4

α2N for i = j

Therefore ΓN + Γ⋆
N = 1√

N

. . .
. . .

 is a normalized

Wigner matrix and λmax (ΓN + Γ⋆
N )

a.s.−→
N→∞

2
√
2

α . Hence

1

α
<

1√
2

⇐⇒ λmax (ΓN + Γ⋆
N ) < 2 a.s. for N large

⇐⇒ IN − ΓN Volterra Lyapunov stable a.s. for N large

Then for α below
√
2 the Volterra Lyapunov stability

cannot be shown using I , however this does not ensure
that IN − ΓN is not Volterra Lyapunov stable a.s. eventu-
ally. We do not want to investigate the Volterra Lyapunov
stability with D ̸= I since we cannot apply classical ran-
dom matrix theory result because of the far more complex
variance profile. In particular, [Bunin, 2017, Discussion]
corroborates the idea of a transition phase phenomenon on
the interaction strength for the global stability of the equi-
librium around 1

α = 1√
2

(for a non hermitian matrix).

Hermitian case. Considering the normalized symmetric
random matrix ΓN = WN

α
√
N

being a Wigner matrix with
centered entries having variance equals to 1

α2 , we note that

λmax

(
WN

α
√
N

)
a.s.−→

N→∞
2
α . From [Berman and Hershkowitz,

1983, Theorem 1]:

Theorem 4.5. For symmetric matrices, the Volterra
Lyapunov stability is equivalent to the P-property.

From [Cottle et al., 2009, Proposition 2.2.16]:

Proposition 4.6. A symmetric matrix is a a P-matrix
if and only if it is positive definite.

We are looking for the necessary and sufficient conditions
on interaction strength 1

α for having I − ΓN a positive
definite matrix when N is large enough. Since this is an
hermitian matrix, its eigenvalues are real. Thus, we are
looking for conditions on the eigenvalues to be asymptoti-
cally positive. Hence

1

α
<

1

2

⇐⇒ λmax

(
WN

α
√
N

)
< 1 a.s. for N large

⇐⇒ ∀k 0 < λk (I − ΓN ) a.s. for N large

Therefore, for an hermitian matrix, there is a transi-
tion phase phenomenon on the interaction strength for the
global stability of the equilibrium around 1

α = 1
2 .

4.2 The P-property
A consequence of Theorem 4.3 is that if IN − ΓN is a
P-matrix, then the LV system has a unique non negative
equilibrium. Hence the importance of identifying condi-
tions on interactions strength to satisfy the P-property.

Thanks to Theorem 4.5 and Proposition 4.6 there is a
phase transition phenomenon for both, the P-property and
the Volterra Lyapunov stability, at 1

α = 1
2 in the context

of an hermitian random matrix. However, [Rohn and Rex,
1996, Theorem 3.4] show that the problem is NP-hard for
a general real matrix.

4.2.1 Towards a spectral characterization
We have no result for non hermitian random matrices that
could participate to solve the P-matrix problem. Never-
theless as we will see in this part, the P-matrix problem
is related to the regularity of an interval matrix, [Rump,
2003a, Theorem 2.1].

Definition 4.7. An interval matrix [A,A] is defined
as

[A,A] = {A ∈ Rm×n | A ≤ A ≤ A} ,

where the inequality is componentwise. [A,A] is
said to be regular if it contains no singular matrix;
otherwise it is singular.

We shall often consider the center matrix and the radius,
Ac =

A+A
2 and ∆ = A−A

2 so that, [A,A] = [Ac ±∆].
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Theorem 4.8. If A − I and A + I are non singular
then the following properties are equivalent:

(i) A is a P-matrix;
(ii) [(A− I)

−1
(A+ I)± I] is regular;

(iii) max
x∈{±1}n

ρR
(
(A+ I)

−1
(A− I) diag(x)

)
< 1.

Proof . Define Ac = (A− I)−1(A+ I) ⇐⇒ A =
(Ac+I)(Ac−I)−1. This theorem stems from [Rump,
2003a, Theorem 2.1] applied with the good the cen-
ter matrix (the A in the expression of [Rump, 2003a,
Theorem 2.1] corresponds to Ac

−1 here) and a sign
real spectral radius bound r equals to one. Then, to
see that both first points, for the theorem and the con-
sequence, are the same, we need to observe that(

I −Ac
−1

)−1 (
I +Ac

−1
)

=
(
I −Ac

−1
)−1

+
(
I −Ac

−1
)−1

Ac
−1

=(Ac + I) (Ac − I)
−1

=A

Indeed(
I −Ac

−1
)−1

=
(
AcAc

−1 − IAc
−1

)−1

=
(
(Ac − I)Ac

−1
)−1

= Ac (Ac − I)
−1

hence(
I −Ac

−1
)−1

Ac
−1 =

(
Ac

(
I −Ac

−1
))−1

=
(
AcI −AcAc

−1
)−1

= (Ac − I)
−1

Therefore, the P-property of IN −ΓN (provided that the
matrix ΓN is non singular) is equivalent to the regularity
of the interval matrix

[−2ΓN
−1 + IN ± IN ] = [−2ΓN

−1,−2ΓN
−1 + 2IN ] .

Note that in our case, matrices belonging to the interval are
positive diagonal perturbations of the matrix −2ΓN

−1.
Considering any interval matrix of the form [Ac ± ∆],

we introduce a new term called the regularity radius,
which represents the “distance” from the center matrix to
singularity, [Poljak and Rohn, 1993, Theorem 2.1], [Rohn,
2012b, definition 3.3.24].

Definition 4.9. We define the regularity radius as

d(Ac,∆) = min{δ ≥ 0; [Ac ± δ∆] is singular} .

[Poljak and Rohn, 1993, Theorem 2.1] introduce a sim-

pler version of the regularity radius:

d(Ac,∆) =
1

max
y,z∈{±1}n

ρR
[
Ac

−1 diag(y)∆diag(z)
]

In this definition diag(y),diag(z) are diagonal matrices
filled with y, z ∈ {±1}n. Then for our ∆ = IN ,
diag(y)∆diag(z) = diag(x) for x ∈ {±1}n.

d(Ac, I) =
1

max
x∈{±1}n

ρR
[
Ac

−1 diag(x)
]

Therefore, the P-property of IN − ΓN is equivalent to
d
(
−2ΓN

−1 + IN , IN
)

> 1 which corresponds to the
third point in Theorem 4.8. Such condition illustrates
that our interval matrix does not touch the singularity
border, which ensures regularity of our interval. Note
that max

x∈{±1}n
ρR (·diag(x)) is often called the “sign real

spectral radius”, see e.g. [Rump, 2003a], [Rohn, 2012c].
In [Rohn, 2012c, theorem 2], the author proves that the
first two points of the equivalence in Theorem 4.8 can be
proved under the unique assumption that A− I is non sin-
gular. [Rohn and Shary, 2018, Theorem 9] proves a purely
linear algebraic result about regularity radius. Considering
an interval matrix centered on Ac

• either d
(
Ac

−1, I
)
≤ 1

• or d(Ac, I) ≤ 1

In the same paper [Rohn and Shary, 2018, Theorem 5],
authors state that if [I ± |Ac|] or [Ac

−1 ± I] is regular,
then [Ac ± I] is singular. Hence [Rohn and Shary, 2018,
Theorem 9]:

• either [Ac
−1 ± I] is singular that is, ∃S singular ∈

[Ac
−1 ± I] ⇐⇒ d

(
Ac

−1, I
)
≤ 1

• or it is regular which implies using [Rohn and Shary,
2018, Theorem 5] that [Ac ± I] is singular that is,
∃S singular ∈ [Ac ± I] ⇐⇒ d (Ac, I) ≤ 1

Another formulation is

• either d
(
Ac

−1, I
)
≤ 1

• or d
(
Ac

−1, I
)
> 1 =⇒ d (Ac, I) ≤ 1

Unfortunately we do not have the other implication:

d (Ac, I) ≤ 1 =⇒ d
(
Ac

−1, I
)
> 1

⇐⇒ d
(
Ac

−1, I
)
≤ 1 =⇒ d (Ac, I) > 1
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Based on simulations and theoretical results found in
the literature the hope of this research work was to put evi-
dence on a phase transition phenomenon for the P-property
at 1

α = 1 in the context of a non hermitian random matrix.
Indeed, we would have liked to show:
∀ε > 0, ∃N⋆ such that ∀N ≥ N⋆, (1 + ε) I − ΓN is a

P-matrix a.s. ⇐⇒ α > 1 .
Miscellaneous paths of ideas have been investigated to

show the above result,

• working on the spectral radius of submatrices to ap-
ply [Geman, 1986, Main result],

• working on interval matrices to show that the spec-
trum of all matrices of matter (namely, positive diag-
onal perturbations of −2ΓN

−1 contained in the inter-
val of interest) do not include 0,

• finding conditions so that the sign real spectral radius,
and the regularity radius in turn, would ensure the P-
property of our matrix of interest

5.1 Spectral radius and determinant of submatrices
Given a realization ω of a sequence of random matrices
{XN}N∈N, whose entries follow a symmetric distribution
(centered with variance equals to σ2), we obtain from [Ge-
man, 1986] that there is a ω ∈ Ω̃ ⊂ Ω so that P(Ω̃) = 1
and for all ε > 0, there exists a N⋆(ω, ε) such that for all
N ≥ N⋆,

ρ

(
XN√
N

)
≤ σ + ε .

Then we have been able to show (Appendix A.1) that for a
fixed set of indices I ⊂ [[1, N ]], for all ε > 0, there exists
N⋆(ω, ε, I) such that for all N ≥ N⋆ the result is true.
While N⋆ depends on the submatrix indices I, simulations
(Fig. 10) support the idea that there might exist N⋆ so that
for all N above and for each I ⊂ [[1, N ]] the spectral radius
of the submatrix is bounded by σ.

On Fig. 10 note that for all entries distribution (real
gaussian, complex gaussian, rademacher ±1) we see the
same pattern, increasing maximal spectral radius and de-
creasing minimal determinant according to the dimension.
Remark that there is no horizontal symmetry between the
maximal spectral radius of a submatrix and the minimal
determinant of the latter. Indeed,

min
I⊂[[1,N ]]

det
(
I − XN

I
√
N

)
= min

I⊂[[1,N ]]

∏
k∈I

(
1− λk

(
XN

I
√
N

))
̸=

∏
k∈I

(
1− max

I⊂[[1,N ]]
ρ
(

XN
I

√
N

))

Figure 10: Evolution of the maximal spectral radius (in
blue) and the minimal determinant (in orange) among all
principal submatrices dimension, for 3 kind of 25 × 25
random matrices:
solid line: real Gaussian entries with µ = 0, σ = 1,
dashed line: complex Gaussian entries with µ = 0, σ = 1,
dotted line: Rademacher {±1} entries all normalized by√
N .

Also, some determinants are negative but it does not rebut
our idea since in the simulation α = 1, the matrix is small,
there is no reason for it to be a P-matrix.

Then, motivated by the simulations (Fig. 10) that exhibit
an increasing behavior of principal submatrices spectral
radius according to their dimension, what we would have
liked to prove is the following (see Conjecture 5.1):

Let (Ω,F ,P) be a measured space. There exists Ω̃ ⊂ Ω
such that P(Ω̃) = 1 and for a realization ω = {ΓN}N∈N ∈
Ω̃ which is a sequence of (N ×N) random matrices, for
all ε > 0 there exists a N⋆(ω, ε) such that for all N ≥ N⋆

and I ⊂ [[1, N ]], det([(σ + ε)I − ΓN ]I) > 0.

5.2 Spectrum evolution under a positive diagonal
perturbation

Random matrices are isotropic. Therefore, instead of
studying −2ΓN

−1+∆, ∆ being a positive diagonal matrix
with entries in [0, 2], we will consider ΓN

−1 + ∆, where
∆ has diagonal entries in [0, 1].

On Fig. 11 we observe the well known spectrum of a
random matrix contained in the disk (left) and, the one of
its inverse outside of the disk (right).

We consider four kinds of diagonal deformation (where
diagonal entries of ∆ might be superior to one in order to
show the deformation pattern occurring when the defor-
mation grows):

• ΓN
−1 +∆ where ∆ is δ × I with δ ∈ [0, 3],

• a sparse version of the same deformation (with 1/3
of the diagonal entries set to zero) with δ ∈ [0, 5],

• ΓN
−1 +∆ where ∆ has distinct entries in [0, 3],

• a sparse version of the same deformation (with 1/3
of the diagonal entries set to zero) with δ ∈ [0, 5]
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Figure 11: Spectrum of the 500 × 500 random matrix
ΓN = XN

α
√
N

and ΓN
−1 where α = 1

0.4 . The radius for
ΓN is the standard deviation that is 1

α = 0.4 and the one
for ΓN

−1 is its inverse.

Figure 12: Evolution of the spectrum for a 500× 500 ran-
dom matrix inverse ΓN

−1 perturbed by δ·I with δ ∈ [0, 3].
ΓN = XN

α
√
N

where α = 1
0.4 . In orange, the circle of radius

equals to the inverse of the standard deviation, that is to
say α in this case. In blue, the eigenvalues of ΓN

−1 +∆.

Figure 13: Evolution of the spectrum for a 500× 500 ran-
dom matrix inverse ΓN

−1 perturbed by a sparse version of
δ · I with δ ∈ [0, 5] (a third of zeros). ΓN = XN

α
√
N

where
α = 1

0.4 . In orange, the circle of radius equals to the in-
verse of the standard deviation, that is to say α in this case.
In blue, the eigenvalues of ΓN

−1 +∆.
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Figure 14: Evolution of the spectrum for a 500× 500 ran-
dom matrix inverse ΓN

−1 perturbed by a diagonal with
distinct entries in [0, 3]. ΓN = XN

α
√
N

where α = 1
0.4 . In

orange, the circle of radius equals to inverse of the stan-
dard deviation, that is to say α in this case. In blue, the
eigenvalues of ΓN

−1 +∆.

Figure 15: Evolution of the spectrum for a 500× 500 ran-
dom matrix inverse ΓN

−1 perturbed by a sparse diagonal
with distinct entries in [0, 5] (a third of zeros). ΓN = XN

α
√
N

where α = 1
0.4 . In orange, the circle of radius equals to

inverse of the standard deviation, that is to say α in this
case. In blue, the eigenvalues of ΓN

−1 +∆.

In Figs. 12 to 15, the perturbation matrix ∆ involved has
its entries increasing among each subgraph.

We observe two main phenomena when considering
positive diagonal perturbations ∆ of the random matrix in-
verse ΓN

−1, namely concentration and translation of the
spectrum.

While the deformation proportional to the identity and
the deformation built on distinct diagonal entries trans-
late the spectrum positively (to the right), see Fig. 12 and
Fig. 14 respectively, sparse versions of these deformations
exhibit a concentration of the spectrum in addition to its
translation, see Fig. 13 and Fig. 15.

5.3 Exploration on the sign real spectral radius
Fig. 16 presents the evolution of the maximum real spec-
tral radius of (−2ΓN

−1 + IN )−1 diag(x) (over 50 itera-
tions, for matrix size = 500 × 500) for specific diag(x)
with diagonal entries in ±1. It is interesting to see that
the maximal values appears when diag(x) is reversing the
sign of almost no rows of (−2ΓN

−1+IN )−1 or almost all
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Figure 16: Evolution of max ρR[(−2ΓN
−1 +

IN )−1 diag(x)] for different diag(x) diagonal matri-
ces of different ratio of ±1, for a 500 × 500 generated
random matrix. In red (resp. in black) is represented the
evolution of the maximum real spectral radius computed
on 50 iterations according to the ratios p (resp. 1 − p) of
+1 (resp. −1) on the diagonal diag(x).

Figure 17: Histogram (top) and evolution (bottom) of the
values taken by ρR[(−2ΓN

−1 + IN )−1 diag(x)] for all
possible diag(x) diagonal matrices filled with ±1, for a
20×20 generated random matrix. This graph supports the
results of the above one with the idea that, in our context,
lim
n→∞

sup ρR[(−2ΓN
−1 + IN )−1 diag(x)] ≤ 1.

rows of (−2ΓN
−1 + IN )−1. When some rows have their

sign reversed the real spectral radius seems to be almost
surely smaller.

However, when we look at all the possible diag(x)
on Fig. 17 (for smaller matrix size: 20 × 20 since
it is really computationally expansive) we cannot infer
that max ρR[(−2ΓN

−1 + IN )−1 diag(x)] will occur for
diag(x) filled with large proportion of either +1 or −1
(see the plot of real spectral radius possible values); this is
confirmed by a little investigation on the proportion of ±1
for large values of the real spectral value. Nonetheless we

can see that a few values of the spectral radius are either
small (0) or large (1), while a lot are around 0.5 (see the
histogram).

The miscellaneous paths of ideas we have been through
did not succeed to alleviate the difficulty encountered to
prove the phase transition phenomenon of the P-matrix.
However, the possible transition at 1

α = 1 is corroborated
by simulations done on small matrices (because of the ex-
pensive computations needed to solve the P-matrix prob-
lem) thanks to Rohn’s algorithm as we will see in the next
subsection. Further, in Section 5.5 we will investigate ele-
ments for evidence of the phase transition phenomenon.

5.4 Rohn Algorithm
In the technical report [Rohn, 2012a], the author proposes
a matlab pseudo code to detect the P-property. Matlab
code can be found in [Rohn, 2016]. A translation of this
work into python can be found at https://github.
com/robachowyk/RMT-LVeq-Ecology/tree/
main/check_p_property.

Algorithm 1 Solving the P-matrix problem

Require: A
n = shape(A)
I = eye(n)

Ensure: rank(A− I) = n
Ac = (A− I)−1(A+ I)
S = regising(Ac, I)
if S is empty then return True
else return False

This algorithm is based on [Rohn, 2012c, Theorem 2].
The regising(Ac, ∆) program considers an exhaus-
tive list of methods to determine the REGularIty or the
SINGularity of the interval [Ac − ∆, Ac + ∆]. [Rohn,
2012c, Theorem 2] states that for (A− I) non-singular, A
is a P-Matrix if and only if the interval

[(A− I)−1(A+ I)− I, (A− I)−1(A+ I) + I]

is regular. This interval matrix is of the form [Ac−∆, Ac+
∆] with Ac = (A − I)−1(A + I) and ∆ = I , hence
we call regising(Ac, I) in Algorithm 1. regising
checks the regularity/singularity of the interval matrix by
returning a matrix S singular, if one has been found in the
interval matrix (i.e. singular interval) or a value S = [ ]
empty if no singular matrix has been found in the interval
(i.e. regular interval). It investigates the following meth-
ods:

Conditions for the existence of a singular matrix.
• midpoint matrix Ac: the midpoint matrix Ac of the

interval matrix [Ac ±∆] is singular.
• diagonal condition [Rex and Rohn, 1998, Theorem

2.1]: |Acx| ≤ ∆|x| has a non trivial (i.e. non zero)
solution x.

• steepest determinant descent [Rohn, 1989, Algorithm
5.1]: investigate determinant bounds of the interval
matrix (i.e. the hull of matrices determinant for ma-
trices in the interval).
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• two Qz-matrices [Jansson and Rohn, 1999, Theorem
4.3]: the linear programming problem

maximize zTx [⋆]
subject to (Ac −∆diag(z))x ≤ 0

diag(z)x ≥ 0

is unbounded for some z ∈ {±1}n.
• main algorithm [Rohn, 1993, Theorem 2.2]: loop on
{±1}n to identify the possible singular matrix which
should have the specific form.

• symmetrization [Rex and Rohn, 1998, Sections 4 and
5]: both of the following conditions imply the singu-
larity of [Ac ±∆]:

1. λmax(Ac
TAc) ≤ λmin(∆

T∆)
2. ∆T∆−Ac

TAc positive definite

Conditions for the regularity of the interval.
• Beeck’s condition [Rex and Rohn, 1998, Corollary

3.2 from Beeck]: ρ(|Ac
−1|∆) < 1 is regular (for Ac

non singular).
• symmetrization [Rex and Rohn, 1998, Sections 4 and

5]: both of the following conditions imply the regu-
larity of [Ac ±∆]:

1. λmax(∆
T∆) < λmin(Ac

TAc)
2. Ac

TAc − ∥∆T∆∥I is positive definite
• two Qz-matrices [Jansson and Rohn, 1999, Theo-

rem 4.3]: the linear programming problem Eq. (⋆)
is bounded for all z ∈ {±1}n.

• main algorithm [Rohn, 1993, Theorem 2.2]: loop on
{±1}n to check there is no singular matrix in the
whole interval. This last track is the most expensive
since in case the matrix is a P-matrix and no one of
the conditions presented above succeeded to prove it,
the algorithm will investigate the values of the sign
real spectral radius.

5.5 Phase transition phenomenon
Because of the last NP-hard subcase of the algorithm pre-
sented, it is very expansive to apply the P-matrix algorithm
on large random matrices. Therefore we investigated the
phase transition for the P-property on the parameter α for
15 × 15 matrices only. Below are the graphs obtained,
for a non hermitian matrix (for which the phase transi-
tion is conjectured to occur at α = 1 but has not yet been
showed), Fig. 18. For an hermitian matrix the phase tran-
sition has been proved to occur at α = 2.

These simulations support the following conjecture, ex-
pressed in a more general way:

Conjecture 5.1. Let XN

α
√
N

be a normalized random
matrix, centered with unit variance and bounded
fourth moments. For all ε > 0 we consider(

1
β + ε

)
IN − XN

α
√
N

, and we conjecture that

• if 1
β < 1

α , then
(

1
β + ε

)
IN − XN

α
√
N

is not a
P-matrix

• if 1
β > 1

α , then
(

1
β + ε

)
IN − XN

α
√
N

is a P-
matrix

Being a P-matrix implies to have positive real eigen-
values, [Cottle et al., 2009, Theorem 3.3.4]. Therefore,

∀λk ∈ R, 1
β + ε −

λk

(
XN√

N

)
α should be positive. Since

such real eigenvalue: λk

(
XN√
N

)
belongs to [−1, 1] (due to

the convergence of eigenvalues distribution towards a cir-
cular law) a.s. for N large, and are uniformly distributed
on this interval Edelman et al. [1994]

Erratum: Edelman only proves a convergence in distri-
bution which is too weak for us.

1

β
+ ε−

λk

(
XN√
N

)
α

> 0 for each λk

(
XN√
N

)
real

⇐⇒ 1

β
+ ε >

1

α

Erratum: This proof lacks one important argument, we
are not sure that a.s. for N large the maximal eigenvalue
would converge towards 1.

Thus 1
β + ε < 1

α =⇒
(

1
β + ε

)
IN − XN

α
√
N

is not a
P-matrix . However, proving that

1

β
+ ε >

1

α
=⇒

(
1

β
+ ε

)
IN − XN

α
√
N

is a P-matrix

is another kettle of fish.

Figure 18: Simulation of the probability of being a P-
Matrix based on Rohn’s algorithm, [Rohn, 2016, Regu-
larity/Singularity of an interval matrix algorithm], [Rohn,
2012a]. Phase transition at α = 1. For each value
α ∈ (0, 2] the value of the curve corresponds to a Monte-
carlo simulation over 10 iterations for non-hermitian ran-
dom matrix (i.i.d. reduced centered gaussian) ΓN = XN

α
√
N

of size 15× 15.
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Conclusion
While the stability and feasibility questions in the context
of large Lotka Volterra models involving random matri-
ces have been addressed in the literature, the P-property is
less well investigated. This property is indeed complex to
check, or even impossible on a researcher timescale in case
of large interaction matrix, which may have discouraged
some. At least two main algorithms exist to probe the P-
property of a matrix, [Tsatsomeros and Li, 2000], [Rohn,
2012a]. However the P-matrix problem still remains NP-
hard, which often makes computations too expansive to
run these algorithms.

The spectral characterization of the P-property studied
in [Rump, 2003a], [Rohn, 2012c] and presented in the last
part of Section 4 provides hope to field in the context of
random matrix theory. Indeed, random matrices exhibit
an interesting spectral behavior and conditions might be
found within such background in order to enhance algo-
rithms and prove or disprove the supposed phase transition
according to the interaction strength within the ecological
community studied by the Lotka Volterra model.
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A Appendix
A.1 Ideas based on Geman spectral radius bound
As seen in Section 5, Geman’s result can be generalized to
the principal submatrices.

Proposition A.1. XN a random matrix (whose in-
puts follow a symmetric distribution) such that ∀i, j,
E
[
XNi,j

]
= 0,V

(
XNi,j

)
= σ2,E

[∣∣XNi,j

∣∣4] ≤
c for some c. Then [Geman, 1986] bound on the
spectral radius is also true for some principal sub-
matrix: I ⊂ [[1, N ]], lim

N→∞
ρ
(

XN
I

√
N

)
≤ σ a.s.

Proof . The spectral radius of a random matrix XN

normalized by
√
N , whose entries follow a symmet-

ric distribution, has a well known lim
N→∞

sup almost

surely since [Geman, 1986, Main result]. Given a
realization ω of a sequence of such random matri-
ces {XN}N∈N, we thus have ω ∈ Ω̃ ⊂ Ω so that

P
(
Ω̃
)

= 1, ∀ε > 0, ∃N⋆(ω, ε) such that ∀N ≥

N⋆, ρ
(

XN√
N

)
≤ σ + ε. This last sentence rewrites

∀N ≥ N⋆, lim
p→∞

∥∥∥ Xp
N

Np/2

∥∥∥1/p ≤ σ + ε, [Gelfand,

1941], where ∥·∥ =
√∑

i,j |·|
2
i,j =

√
Tr (·⋆ ·) de-

notes the Frobenius norm for matrices.
We want to transpose this result to XI

N a princi-
pal submatrix of XN for some I ⊂ [[1, N ]] fixed.
Based on Geman’s proof we will show that ∀ε >
0, ∃N⋆(ω, ε, I) such that ∀N ≥ N⋆ -which now
also depends on the sequence of submatrix indices-
the result is true. For this purpose, for any ρ > σ
and for all positive integer p ≤ 13, we will develop
E
[∑

N≥1
∥(·)p∥2

ρ2p

]
for the matrix and the principal

submatrix.

E

 ∑
N≥1

∥∥∥(XN
I

√
N

)p∥∥∥2
ρ2p


=

∑
N≥1

1

ρ2pNp
E
[ ∥∥∥(XN

I)p∥∥∥2 ]

=
∑
N≥1

1

ρ2pNp
E

∑
i,j

[
(
XN

I)p]2i,j


=
∑
N≥1

1

ρ2pNp
E

∑
i,j

[
(
XN

I)p]i,j [(XN
I)p]i,j

 4

=
∑
N≥1

1

ρ2pNp

∑
i,j,

k1,...,kp−1,
l1,...,lp−1︸ ︷︷ ︸
2p indices ∈I

E [XN
I ]i,k1

[XN
I ]k1,k2

. . . [XN
I ]kp−2,kp−1

[XN
I ]kp−1j [XN

I ]i,l1 [XN
I ]l1,l2

. . . [XN
I ]lp−2,lp−1

[XN
I ]lp−1j

=
∑
N≥1

1

ρ2pNp
(∗)

E

 ∑
N≥1

∥∥∥(XN√
N

)p∥∥∥2
ρ2p


=

∑
N≥1

1

ρ2pNp

∑
i,j,

k1,...,kp−1,
l1,...,lp−1︸ ︷︷ ︸

2p indices ∈[[1,N]]

E [XN ]i,k1
[XN ]k1,k2

. . . [XN ]kp−2,kp−1
[XN ]kp−1j [XN ]i,l1 [XN ]l1,l2

. . . [XN ]lp−2,lp−1
[XN ]lp−1j

=
∑
N≥1

1

ρ2pNp
(∗∗)

When expressing a principal submatrix of ΓN , we
still consider the normalization by

√
N while the

principal submatrices have smaller size than (N ×
N). This important point allows us to express (∗∗)
according to (∗) since XN

I
√
N

⊂ XN√
N

.
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E

 ∑
N≥1

∥∥∥(XN√
N

)p∥∥∥2
ρ2p


=

∑
N≥1

1

ρ2pNp
(∗∗)

=
∑
N≥1

1

ρ2pNp
(∗)

+
∑
N≥1

1

ρ2pNp

∑
i,j,...︸︷︷︸

indices ∈[[1,N]]\I

E[XN ]i,. . . . [XN ].,j

[XN ]i,.. . . . [XN ]..,j

In the second term above,∑
i,j,...︸︷︷︸

indices ∈[[1,N]]\I

E[XN ]i,. . . . [XN ].,j [XN ]i,.. . . . [XN ]..,j

focuses on the expectation of terms from the whole
matrix XN that are not considered in the principal
submatrix XN

I . For each element in the sum, if
any term appear an odd number of times, it makes
the element of the sum vanish as odd moments of
symmetric law variables are zero. Therefore, the
second term in the above expression only sums
products of even moments. As a consequence this is
a positive term, therefore:

E
∑
N≥1

∥∥∥(XN
I

√
N

)p∥∥∥2
ρ2p

≤ E
∑
N≥1

∥∥∥(XN√
N

)p∥∥∥2
ρ2p

By [Geman, 1986] proof the right term is finite

which guarantees
∑

N≥1
∥(XN

I/
√
N)

p∥2

ρ2p < ∞
a.s. Then by Hadamard criterion for power se-

ries lim
p→∞

∥∥∥(XN
I/

√
N
)p∥∥∥2 ≤ ρ2p a.s. hence

our result: lim
p→∞

∥∥∥(XN
I

√
N

)p∥∥∥1/p ≤ ρ a.s. Be-

cause this is true for any fixed ρ > σ we get that
lim

N→∞
ρ
(

XN
I

√
N

)
≤ σ a.s.

A.2 Additional results
For positive square real matrix we know from [Rump,
2003b, Theorem 2.9]:

2C+ = {z ∈ C; Im(z) > 0}
3In [Geman, 1986] proof, ∀N, p = pN ≥ 1, pN ∼ k logN

and
∑

N≥1 N
2pN/ρ2pN < ∞. We can therefore chose the

same ρ and the same p when developing the expectations for-
mulas for ΓI

N and for ΓN .

Theorem A.2. For A with non negative entries,
ρ(A) < σ ⇐⇒ σI −A is a P-matrix

To prove it, we apply [Horn and Johnson, 1994, Theo-
rem 2.5.3] on the Z-matrix σI − A5. If ρ(A) ≤ σ in such
representation, A is said to be a M-matrix [Jeyaraman and
Sivakumar, 2016, Definitions page 43]. Then, if this in-
equality is strict : ρ(A) < σ, A is a nonsingular M-matrix,
that is to say A is a P-matrix [Plemmons, 1977, Theorem
1].

From [Rump, 1997, Theorem 2.3], we have the follow-
ing equivalences for A a (n× n) matrix and b positive:

Theorem A.3. max
x∈{±1}n

ρR (A diag(x)) < b ⇐⇒

∀x ∈ {±1}n bI − diag(x)A is a P-matrix

From [Lehmann et al., 2017, Theorem 2.1] we have for
A a real matrix:

Theorem A.4. max
x∈{±1}n

ρR (Adiag(x)) < 1 ⇐⇒

z 7→ z +A|z|is bijective in Rn

From [Barker et al., 1978, Theorem of Lyapunov], for a
matrix A we have:

Theorem A.5. The eigenvalues of A have positive
real parts ⇐⇒ ∃H symmetric positive definite such
that AH +HA⋆ is positive definite.

A.3 Simulation tests
We have seen in Section 4 that regarding the interval ma-
trix [Ac ± I]

• either d
(
Ac

−1, I
)
≤ 1

• or d
(
Ac

−1, I
)
> 1 =⇒ d (Ac, I) ≤ 1

But unfortunately the converse is not proved. The other
implication we are interested in would have been the fol-
lowing:

d (Ac, I) ≤ 1 =⇒ d
(
Ac

−1, I
)
> 1

i.e. d
(
Ac

−1, I
)
≤ 1 =⇒ d (Ac, I) > 1

Which traduces in:

1

max
x∈{±1}n

ρR [Ac diag(x)]
≤ 1 =⇒ 1

max
x∈{±1}n

ρR
[
Ac

−1 diag(x)
] > 1

Then,

max
x∈{±1}n

ρR [Ac diag(x)] ≥ 1 =⇒ max
x∈{±1}n

ρR
[
Ac

−1 diag(x)
]
< 1

Continuing this reasoning, algorithmically speaking if
ρR [Ac] ≥ 1 then d (Ac, I) > 1; thus we would get an
additional condition to check that [Ac ± I] is regular.

5Z-matrices have the form σI − P with P ≥ 0 and σ > 0
[Fiedler and Markham, 1992, Definition 1.1]
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J. Rohn algorithm for testing the P-property does not
work for large matrices (n > 15). If we find conditions
for which this implication is true, we could re arrange the
algorithm by including the conditions so that our matrix of
interest ΓN micht be checked to be a P-matrix.

It is quite interesting to see what happen if we insert this
condition in the algorithm (without evidence of relevance).
We recover the phase transition at α ≈

√
2 proposed by the

physicists for global stability [Bunin, 2017] (see Fig. 19).

Figure 19: Simulation of the probability of being a P-
Matrix based on Rohn’s algorithm (re arranged). Phase
transition at α ≈ 1√

2
. For each value α ∈ (0, 2] the value

of the curve corresponds to a Montecarlo simulation over
50 iterations for non hermitian random matrix (i.i.d. re-
duced centered gaussian) of size 100× 100.

With the correct algorithm we find a transition phase at
α = 1 (but we cannot test the algorithm for large matrices)
- see Fig. 18.

20



References

Akjouj, I. and Najim, J. (2021). Feasibility of sparse large
lotka-volterra ecosystems.
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